
N-Body simulation using Particle-Mesh Method

(NOISE)

Hitesh Kishore Das
(4th Year UG) 11-01-00-10-91-16-1-13491

Under supervision of

Prof. Prateek Sharma

Introduction
N-body simulations are widely used in many �elds of physics like soft condensed matter and astrophysics. In many

such simulations in astrophysics, the main force acting on the particles is the gravitational force. Some of the methods

for such N-body simulations are:

• Direct method: Direct calculation of forces on each particle due to every other particle

• Particle-Meshmethod: Calculation of forces from potential obtained by a method employing FFT, IFFT and density

�eld.

• Tree method: Direct force calculation for nearby particles and approximations for the ones far away.

The Direct N-body method is computationally expensive for large number of particles. So, alternative methods are used

to reduce this computational cost. This project is on implementing theParticle-Meshmethod for N-body simulations.

The main focus is on astrophysical circumstances, hence the code units used are of astrophysical scale and gravitational

force is taken as the central force.

I structured the code similar to other simulation codes that I have used, like PLUTO code and LAMMPS. Following the

tradition of giving peculiar names to Astrophysical surveys and codes, I named this set of code "NOISE".

The code is available on Github: https://github.com/HiteshKishoreDas/NOISE.

1 What’s happening under the hood?
The structure of this code set is shown as a �owchart in Fig. 1.

1.1 Simulation Parameters (config.py)
For every simulation, one needs to de�ne some parameters like box size, resolution, timestep size, etc. In this code, all

such parameters are de�ned in config.py. Following are the di�erent de�ned parameters and corresponding expla-

nation:

• unit_mass: Mass set to 1.0 in code. Set to 1 solar mass in kilograms by default.

• unit_length: Length set to 1.0 in code. Set to 1 parsec in metres by default.

• unit_time: Time set to 1.0 in code. Set to 106 years in seconds by default.

• G: Value of universal gravitational constant in code units.

• x_start: Starting point of x-axis. y_start and z_start are set to be equal to x_start.

• x_end: Starting point of x-axis. y_end and z_end are set to be equal to x_end.

• stop_time: Time to stop the simulation in code units.

• step_length: Grid cell size in code units.

• step_time: Timestep size in code units.

• N_particles: Number of particles in the simulation.

• max_vmag0: Maximum magnitude of velocity in initial conditions.

• mass_assign_scheme: Assignment scheme to be used for mass assignment to grid cells.

Options: "NGP"(Nearest Grid Point), "CIC"(Cloud-in-Cell).

• force_assign_scheme: Assigment scheme to be used for interpolating force.

Options: "NGP"(Nearest Grid Point), "CIC"(Cloud-in-Cell).

1

https://github.com/HiteshKishoreDas/NOISE


Figure 1: Flowchart diagram showing general structure of the code.

• time_integration_scheme: Time integration method to be used for getting the positions and velocities of particles

in next timestep. Options: "LEAPFROG".

• parent_dir: Directory where the "output" directory and "Plots" directory will be created.

• output_dt: Time interval (in code units) between outputs into "output" directory.

• h: Dimensionless Hubble constant

• t_0: Calculated age of universe (used to calculate scale factor)

• a_p: Power in relation for scale factor. Is equal to 2./3. for matter-dominated universe and 1./2. for radiation-

dominated universe. Set to 0. for no expansion.

It contains following function:

• print_config(): Run this module as a program to get a list of de�ned simulation parameters

This module also contains a test block which is executed if the module is run individually. The test block calls the

print_config() function.

1.2 Initial conditions (initial_condition.py)
This module contains the function for de�ning the initial condition for the simulation. The particle properties are

de�ned as a 2D numpy array (called particle in the code). Each row contains all the properties of a given particle.

Starting from index 0, the columns in the array are- mass, x-coordinate, y-coordinate, z-coordinate, x-velocity, y-

velocity, z-velocity, x-force, y-force and z-force. This module won’t be executed if a restart is being used with run.py.

Functions in the module:

• initial(): Function for de�ning the initial conditions. It takes no input and returns a 2D array with the particle

properties.

• There may be additional user-de�ned functions that are used in intial(), depending simulation setup.

The test block shows the mass distribution, position scatter and velocity scatter of initial condition.

2



1.3 Mass assignment (assign.py)
The mass of the particles need to be assigned to the grid cells before the calculation of potential. There are multiple

schemes available for this task:

• Nearest Grid Point: Mass of the particle is assigned to the nearest grid cell.

• Cloud-in-Cell: Mass fraction assigned to a grid cell is depends on the intersected volume between a grid cell sized

cube around the particle and the grid cell. A 2D version of this scheme is shown in Fig. 2.

Figure 2: (Left) 2D version of the CIC scheme. (Right) Plot of assignment functions for NGP and CIC. Source: Computer
simulation using particles, Hockney and Eastwood

These schemes are implemented using assignment functions, W (x). The value of mass assigned to the grid cells

depends on the distance of particle from the grid cell centre, given as x. The assignment functions are shown in Fig. 2

Related functions in this module:

• top_hat(): Top-hat function for assignment function. It takes an array as input and returns corresponding function

value

• triangle(): Triangle function for assignment function. It takes an array as input and returns corresponding function

values as an array.

• W_NGP(): Assignment function for Nearest grid-point assignment scheme.

• W_CIC(): Assignment function for Cloud-in-cell assignment scheme.

• assign_scheme (): Returns the required assignment function and extent of in�uence, according to the simulation

parameters in config.py. It returns the assignment function for both mass assignment and force assignment. Force

assignment function is later used in force_assign() function.

• mass_assign(): Function for mass assignment to grid cells. It takes particle and grid properties as input and returns

a density �eld array.

Function relevant to force interpolation will be mentioned in Force interpolation subsection (1.6). The test block in this

module shows the time taken for mass and force assignment in a timestep.

1.4 Solving Poisson’s equation (poisson.py)
Completing the mass assignment to gridpoints, gives a density �eld which can now be used to calculate the potential

�eld using Fast Fourier Transform (FFT) and Inverse FFT (IFFT).

Φ(r) = −G
∫∫∫

ρ(r′)

‖r− r′‖
d3r′

=⇒ Φ̃(k) = −Gρ̃(k)

[
1̃

r

]
(k) (1)

Due to lower time complexity of FFT and IFFT (O(N logN)), it is faster for larger number of particles than Direct N-

body simulation. The density �eld from mass_assign() in assign.py is used for the calculation in Eq. (1). Functions

in this module:

• onebyr():Function to calculate 1/r for Eq. (1). It takes grid cell centers as input and returns 1/r array.

• poisson(): Function for calculation of Φ(r) by obtaining Φ̃(k) using Eq. (1) and taking an IFFT. It takes density �eld

array from mass_assign() and grid cells properties to return potential �eld.

The test block returns the time taken for solving Poisson’s equation, projected potential �eld and projected particle

distribution.

3



1.5 Force calculation force.py

Fi =
ρ (Φi−1 − Φi+1)

2∆i
(2)

This module uses �nite di�erence approximation for calculating force from potential �eld using Eq. (2) in all three

directions. This module also contains a function that combines all the steps into one function.

The functions contained in this module are:

• force(): Function to calculate forces in three directions using �nite di�erence approximation as shown in Eq. (2). It

takes potential and density �eld to return three force components.

• particle_to_force(): Function to combine the steps of mass assignment, solving Poisson’s equation, force calcu-

lation and force interpolation (explained later) into a single function. It takes particle and grid properties to return

particle properties with force values for each particle.

The test block is the time taken for force calculation and plots all three projected force components distribution.

1.6 Force interpolation (assign.py)
This module interpolates the forces obtained on grid cell positions from force() to the position of particles using

the same schemes as mentioned in section 1.3 about Mass assignment. Force on each particle is calculated as the

sum of forces in grid cells, weighted with assignment function as a function of distance from the particle. Function

energy_cons() in conservation.py is used to maintain energy conservation after force interpolation.

Related function in assign.py:

• force_assign(): Function for interpolating forces to particle positions. It returns particle properties with the cor-

responding forces included.

The test block already explained in section 1.3 about Mass assignment.

1.7 Time integration (time_integration.py)
Leapfrog method is used for time integration in this code. Other methods like 4th-order Runge-Kutta method can be

added via an additional function.

Functions in the module:

• scale_factor(): Function to calculate scale factor for any given timestep.

• leapfrog.py: Function to use leapfrog method to calculate position and velocities at di�erent timesteps. The forces

at each timestep are calculated using particle_to_force() in force.py. It takes starting particle and grid prop-

erties. It writes an output �le at time intervals according to simulation parameters in config.py using functions in

output.py (explained later).

• time_int_func(): Function that returns the appropriate time intergration method function according to the simu-

lation parameters in config.py.

The test block shows the time taken for one time integration step.

1.8 Output (output.py)
This module contains the functions for saving output from the time integration steps for later processing. The functions

in the module are:

• output(): Function to save particle properties 2D array as “.npy" �les in a “output" directory inside the parent

directory as de�ned in config.py. If the “output" directory does not exist, it creates the directory.

• output_info(): Function to save info �les which contains time and timestep size for each output in a dictionary

format as “.npy" format in the same “output" directory.

1.9 main.py and run.py

main.py is the module that brings the whole simulation process into a single function, main_func(), which can be

called by other programs.

run.py is the python �le that is run in the terminal. It has a -restart �ag, which enables the user to restart the simulation

from a existing output �le in the “output" folder in the parent directory. This �le calls the main_func() function de�ned

in main.py module.

4



Figure 3: (Left) 2-body simulation with no initial velocities. (Middle) 2-body simulation with initial velocities. Right
3-body simulation with no initial velocities. Note: Solid cross - Starting position of particles, Solid circle - Last position

2 Does it work?
2.1 2-body and 3-body simulations
2-body simulations with and without any initial velocities is run to check the outputs. A 3-body simulation is also

run without any initial velocities to check if the trajectories are chaotic as expected. Note that, Direct N-body method

is better for 2-body and 3-body simulations as very close interactions are not resolved accurately in particle-mesh

simulations. The results don’t show any peculiar behaviour and are as expected.

Fig. 3 (Left) shows that the two particles just move almost on the line joining them, as expected. Fig. 3 (Middle) shows

how the orbits change as the center of mass is moving. Fig. 3 (Left) shows the chaotic trajectories for particles, as

expected.

2.2 Large scale structure formation
At very large length scales, web-like structures are observed. In the last row of Fig. 4, the left picture shows the observed

distribution of galaxies near Coma cluster, given in [2] and such large web-like structures can be easily seen in this

image.

To simulate these large-scale structures, I start with a uniform distribution of particles in the box. To include expansion

of space, the box is kept �xed, but the forces and velocities are scaled accordingly using the calculated scale factor.

There are two simulations with expansion, constituting of di�erent number of particles. The results are very similar

with minor di�erences between the simulations. Snapshots of particle positions projected in z-directions are shown in

�rst two rows of Fig. 4. We can see the formation of large-scale structures in these snapshots.

The results also look very similar to the simulation results from [2] and [1] shown in middle and right image of last

row in Fig. 4. The web-like structures in these simulations are present snapshots in last column of upper two rows. The

presence of more cavities in simulation snapshots from [2] is due to the fact that the galaxies are magnitude-limited,

that is, only galaxies above a speci�c magnitude has been shown.

For more quantitative comparison, I compare the two-point correlation function given in [2] with the two sets of

simulations shown in Fig. 4. The two-point correlation function has been calculated for the last snapshot in �rst three

rows of Fig. 4. We see that the shape of two point correlation function matches the one given in [2]. The minor

di�erences may be due to less particles than that used in literature (∼ 106). The disturbances in two point correlation

function at small values of r decrease with increase in number of particle.

3 Conclusion
In this project the N-body simulation is implemented using the Particle-Mesh method. In this report, I have explained

the details about the process of di�erent calculations made in this implementation. I have also tested this implementa-

tion through di�erent test cases, namely, 2-body, 3-body and structure formation simulations. In all the test cases, the

results from this implementation matches the expected results and results given in literature ([2],[1]). There are a lot

improvements that can be done over the current implementation, like other types of time integration methods, more

kinds of boundary conditions, adding provision for parallel computing, adaptive resolution and although ambitious,

maybe general relativistic simulation with weak-�eld approximation using this particle-mesh framework.

5



Figure 4: (Top row) Snapshots of simulation with expansion and 10000 particles (Middle row) Simulation with ex-

pansion and 20000 particles (Bottom row, Left) Observed magnitude-limited galaxy distribution near Coma cluster

[2]. (Bottom row, Middle) Simulations for large scale structure formation in [2]. (Bottom row, Right) Simulations

for large scale structure formation in [1]. Note: h = 0.5 for my simulations and those in [2].

Figure 5: (Left) Two point correlation function (TPCF) for simulation with expansion and 10000 particles. (Middle)
TPCF for simulation with expansion and 20000 particles. (Right) TPCF from [2].

Again, the code is available on GitHub https://github.com/HiteshKishoreDas/NOISE. I hope to add the above

mentioned improvements in future.

References
[1] Arif Babul et al. “Testing the gravitational instability hypothesis?” In: The Astrophysical Journal 427 (May 1994),

p. 1. issn: 1538-4357. doi: 10.1086/174119. url: http://dx.doi.org/10.1086/174119.

[2] Changbom Park. “Large N-body simulations of a universe dominated by cold dark matter”. In: 242 (Feb. 1990),

59P–61P. doi: 10.1093/mnras/242.1.59P.

6

https://github.com/HiteshKishoreDas/NOISE
https://doi.org/10.1086/174119
http://dx.doi.org/10.1086/174119
https://doi.org/10.1093/mnras/242.1.59P

	What's happening under the hood?
	Simulation Parameters (config.py)
	Initial conditions (initial_condition.py)
	Mass assignment (assign.py)
	Solving Poisson's equation (poisson.py)
	Force calculation force.py
	Force interpolation (assign.py)
	Time integration (time_integration.py)
	Output (output.py)
	main.py and run.py

	Does it work?
	2-body and 3-body simulations
	Large scale structure formation

	Conclusion

